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The shape gradient is a new (to us) way to 
think about derivatives involving shapes. 

•  Derivatives involving shapes are central to stellarator 
optimization. 

•  These derivatives also encode tolerances, which have 
been a leading driver of cost:  

•  Compared to ‘parameter derivatives’, shape gradients 
have 2 advantages: 

2 

“The	largest	driver	of	the	project	cost	growth	were	the	
accuracy	requirements.”	[Strykowsky	et	al,	Engineering	
Cost	&	Schedule	Lessons	Learned	on	NCSX,	(2009)]	

o  Spatially local 
o  Independent of parameterization 



Understanding local sensitivity of 
stellarators using shape gradients 

•  2 ways to represent derivatives: parameter derivatives 
vs. shape gradients. 

•  Computing shape gradients from parameter 
derivatives (e.g. STELLOPT) 

•  Examples 
–  Rotational transform 
–  Neoclassical transport 
–  Coil-plasma distance 

•  Coil tolerances 
•  Magnetic sensitivity and tolerances 

3 



Parameter derivatives and shape gradients are 
complementary ways to express derivatives. 

4 

		Let		f 		denote	any	figure	of	merit,	e.g.	ι ,	neoclassical	transport,	etc.
Parameter	derivatives:	 		Example:		∂ f /∂Rm ,n

c 	and	∂ f /∂Zm ,ns

		

R θ ,ζ( ) =
m,n
∑ Rm,n

c cos mθ −nζ( ) , 							
Z θ ,ζ( ) =

m,n
∑ Zm,n

s sin mθ −nζ( )

		where		Rm ,n
c 	and	Zm ,ns 	parameterize	the	plasma	boundary	shape:



Parameter derivatives and shape gradients are 
complementary ways to express derivatives. 

5 

		Let		f 		denote	any	figure	of	merit,	e.g.	ι ,	neoclassical	transport,	etc.
Parameter	derivatives:	 		Example:		∂ f /∂Rm ,n

c 	and	∂ f /∂Zm ,ns

		

R θ ,ζ( ) =
m,n
∑ Rm,n

c cos mθ −nζ( ) , 							
Z θ ,ζ( ) =

m,n
∑ Zm,n

s sin mθ −nζ( )
•  Successfully used in 

STELLOPT to design 
NCSX, etc. 

•  Computable by finite 
differencing any code. 

But, 
•  Not unique: coordinate-

dependent, 
•  Nonlocal: awkward for 

engineering. 

		where		Rm ,n
c 	and	Zm ,ns 	parameterize	the	plasma	boundary	shape:



Parameter derivatives and shape gradients are 
complementary ways to express derivatives. 

6 

Shape	gradients:	 			For	surfaces,		S 	where	δ f = d2a∫ δr ⋅n( )S

•  Local (real-space, not Fourier-space). More useful for engineering. 

•  Independent of coordinates used to parameterize surface. 

•  May provide different insight than parameter derivatives. 

Othmer, J Math. Industry (2014). 

Unit normal 



Parameter derivatives and shape gradients are 
complementary ways to express derivatives. 
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Shape	gradients:	 			For	surfaces,		S 	where	δ f = d2a∫ δr ⋅n( )S

			 
For	coils,		Sk 	where	δ f = dℓ∫coils	k

∑ 	δr ⋅Sk , 		and	Sk ⋅
∂r
∂ℓ

=0.

•  Local (real-space, not Fourier-space). More useful for engineering. 

•  Independent of coordinates used to parameterize surface. 

•  May provide different insight than parameter derivatives. 

Othmer, J Math. Industry (2014). 

Unit normal 



Parameter derivatives and shape gradients are 
complementary ways to express derivatives. 
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Shape	gradients:	 			For	surfaces,		S 	where	δ f = d2a∫ δr ⋅n( )S

Othmer, J Math. Industry (2014). 

Unit normal 

Recently used for optimizing tokamak divertor shapes: 

•  W. Dekeyser, Ph.D. thesis, KU Leuven (2014). 

•  W. Dekeyser et al, Nucl. Fusion 54, 073022 (2014). 

•  M. Baelmans, et al, Nucl. Fusion 57, 036022 (2017). 



The shape gradient representation can be expected 
to exist for many important shape functionals. 

9 

		Derivative	of	a	function	of	n	numbers		f r1 ,r2 ,...,rn( ):

		
δ f = ∂ f

∂rj
δrj

j=1

n

∑

		 

n→∞	limit:			f = f r ℓ( )⎡
⎣

⎤
⎦ ,					δ f = dℓ∫

δ f
δr
S
"

δr

This	is	an	instance	of	the	Riesz	representation	theorem:		
Any	linear	operator	can	be	written	as	an	inner	product	with	some	
element	of	the	appropriate	space.	

1D:	



In some cases, shape gradients can be 
computed analytically. 

10 

			 If		f C
⎡⎣ ⎤⎦ = dℓ

C∫ 	Q	for	some	Q r( ) 	and	space	curve	C ,
Integrals	over	a	curve:	

			 
⇒ 		δ f = dℓ

C∫ 	δr ⋅
"
I − tt( )⋅∇Q−Qκn⎡

⎣
⎤
⎦

S
# $%%% &%%%

		where		κ = curvature,		t = tangent.
Integrals	over	a	surface:	

			 
⇒ 		δ f = d2a

∂Ω∫ δr ⋅n( ) n ⋅∇Q−2QH( )
S

! "## $##

		where		H =mean		curvature.

			If		f ∂Ω⎡⎣ ⎤⎦ = d2a	
∂Ω∫ Q	for	some	Q r( ) 	and	surface	∂Ω ,



Understanding local sensitivity of 
stellarators using shape gradients 

•  2 ways to represent derivatives: parameter derivatives 
vs. shape gradients. 

•  Computing shape gradients from parameter 
derivatives (e.g. STELLOPT) 

•  Examples 
–  Rotational transform 
–  Neoclassical transport 
–  Coil-plasma distance 

•  Coil tolerances 
•  Magnetic sensitivity and tolerances 
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Previously, shape gradients have usually 
been computed using adjoint methods. 

•  An	adjoint	equation,	when	available,	gives	the	shape	
gradient	(representing	all	possible	shape	
perturbations)	at	the	cost	of	~	1	regular	solve.	

•  Then,	the	shape	gradient	is	very	efPicient	for	shape	
optimization:	

•  However,	adjoint	methods	require	analytic	work	&	
code	development	for	every	target.	

•  Here,	instead,	we	show	how	to	compute	shape	
gradients	from	any	code	with	little	extra	work.	

12 

			Choose		δr = −εSn					⇒ 					δ f = −ε d2a	∫ S2 <0.
	Step	size	ε >0



The shape gradient can be computed from parameter 
derivatives by solving a small linear system. 

13 

Coils:	 Discretize	coil	shapes:	

		
X ϑ( ) = X0c + Xm

c cos mϑ( )+ Xms sin mϑ( )⎡
⎣

⎤
⎦

m=1
∑

		Parameters	pj 	are	 Xm
c ,Xms ,Ymc ,Yms ,Zmc ,Zms{ }.

		Compute	∂ f /∂pj 	using	finite	differences,	e.g.	STELLOPT.

		&	Y , 	Z



The shape gradient can be computed from parameter 
derivatives by solving a small linear system. 

14 

Coils:	

Discretize	shape	gradient:	

		
SX ϑ( ) = SX ,0c + SX ,m

c cos mϑ( )+ SX ,ms sin mϑ( )⎡
⎣

⎤
⎦

m=1
∑

Discretize	coil	shapes:	

		
X ϑ( ) = X0c + Xm

c cos mϑ( )+ Xms sin mϑ( )⎡
⎣

⎤
⎦

m=1
∑

		Parameters	pj 	are	 Xm
c ,Xms ,Ymc ,Yms ,Zmc ,Zms{ }.

		Compute	∂ f /∂pj 	using	finite	differences,	e.g.	STELLOPT.

		&	Y , 	Z

		&	SY , 	SZ



The shape gradient can be computed from parameter 
derivatives by solving a small linear system. 

15 

Coils:	

			 
dℓ	∫ δr ⋅S =δ f 						⇒ 						Solve		 dℓ	∫

∂r
∂pj

⋅S = ∂ f
∂pj

	for	S.

Discretize	shape	gradient:	

		
SX ϑ( ) = SX ,0c + SX ,m

c cos mϑ( )+ SX ,ms sin mϑ( )⎡
⎣

⎤
⎦

m=1
∑

Discretize	coil	shapes:	

		
X ϑ( ) = X0c + Xm

c cos mϑ( )+ Xms sin mϑ( )⎡
⎣

⎤
⎦

m=1
∑

		Parameters	pj 	are	 Xm
c ,Xms ,Ymc ,Yms ,Zmc ,Zms{ }.

		Compute	∂ f /∂pj 	using	finite	differences,	e.g.	STELLOPT.

(Square	linear	system)	

		&	Y , 	Z

		&	SY , 	SZ



The shape gradient can be computed from parameter 
derivatives by solving a small linear system. 

16 

Coils:	

			 
dℓ	∫ δr ⋅S =δ f 						⇒ 						Solve		 dℓ	∫

∂r
∂pj

⋅S = ∂ f
∂pj

	for	S.

Discretize	shape	gradient:	

		
SX ϑ( ) = SX ,0c + SX ,m

c cos mϑ( )+ SX ,ms sin mϑ( )⎡
⎣

⎤
⎦

m=1
∑

Discretize	coil	shapes:	

		
X ϑ( ) = X0c + Xm

c cos mϑ( )+ Xms sin mϑ( )⎡
⎣

⎤
⎦

m=1
∑

		Parameters	pj 	are	 Xm
c ,Xms ,Ymc ,Yms ,Zmc ,Zms{ }.

		Compute	∂ f /∂pj 	using	finite	differences,	e.g.	STELLOPT.

Similar	procedure	for	boundary	surface.		

		&	Y , 	Z

		&	SY , 	SZ



The algorithm for computing shape gradients can be verified by 
comparison to analytic theory. 

17 

		Consider		f = area.						Analytic	result:		S = −2× mean	curvature( )

			δ f = d2a∫ δr ⋅n( )S



Understanding local sensitivity of 
stellarators using shape gradients 

•  2 ways to represent derivatives: parameter derivatives 
vs. shape gradients. 

•  Computing shape gradients from parameter 
derivatives (e.g. STELLOPT) 

•  Examples 
–  Rotational transform 
–  Neoclassical transport 
–  Coil-plasma distance 

•  Coil tolerances 
•  Magnetic sensitivity and tolerances 
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Example: Rotational transform at r/a=0.5  

19 

Parameter	derivatives	from	
STELLOPT/VMEC:	

Shape	gradient	for	boundary	surface:	

			δ f = d2a∫ δr ⋅n( )S



Example: Rotational transform at r/a=0.5  

20 

Shape	gradient	for	coils:	

			 

Arrows	show	Sk 	where	
δ f = dℓ∫coils	k

∑ 	δr ⋅Sk .



Example: Neoclassical transport      at r/a=0.5  

21 

Parameter	derivatives	from	
STELLOPT/VMEC/NEO:	

Shape	gradient	for	boundary	surface:	
		εeff
3/2

			δ f = d2a∫ δr ⋅n( )S



Example: Neoclassical transport      at r/a=0.5  

22 

Shape	gradient	for	coils:	
		εeff
3/2

			 

Arrows	show	Sk 	where	
δ f = dℓ∫coils	k

∑ 	δr ⋅Sk .



The shape gradient can show where coils 
must be close to the plasma. 

23 

E. J. Paul et al,  
Nuclear Fusion 58, 076015 (2018) 

			Shape	gradient	on	a	current	surface	for	f = d2a∫ B⋅n( )2 	
	given	a	fixed	plasma	boundary

Plasma boundary 

Current 
surface 



Understanding local sensitivity of 
stellarators using shape gradients 

•  2 ways to represent derivatives: parameter derivatives 
vs. shape gradients. 

•  Computing shape gradients from parameter 
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–  Neoclassical transport 
–  Coil-plasma distance 
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Coil tolerances can be computed  
from the shape gradient. 

		 Choose	an	acceptable	Δf &any	weight	w ℓ( )≥0.

			If		 δr ≤T ,
			 
Let		T ℓ( ) = w ℓ( ) 	Δf

d ′ℓ∫∑ 	w ′ℓ( ) S ′ℓ( ) .

			 δ f 	 ≤ 	 dℓ∫ S ⋅δr 	 ≤ 	 dℓ∫ S δr 	 ≤ 	 dℓ∫ ST 	 = 	Δf .



Coil tolerances can be computed  
from the shape gradient. 

		 Choose	an	acceptable	Δf &any	weight	w ℓ( )≥0.

			If		 δr ≤T ,
			 
Let		T ℓ( ) = w ℓ( ) 	Δf

d ′ℓ∫∑ 	w ′ℓ( ) S ′ℓ( ) .

			 δ f 	 ≤ 	 dℓ∫ S ⋅δr 	 ≤ 	 dℓ∫ S δr 	 ≤ 	 dℓ∫ ST 	 = 	Δf .

Conservative: a bound on the worst possible outcome. 



Coil tolerances can be computed  
from the shape gradient. 
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Understanding local sensitivity of 
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A magnetic sensitivity SB can be computed 
from the shape gradient. 

29 

			Substitute	into	δ f = d2a	∫ Sδr ⋅n.

			Define		SB 	by	B0 ⋅∇SB = S − S.

			⇒ 				δ f = d2a∫ 	SBδB⋅n.

After	some	algebra	…	



A magnetic sensitivity SB can be computed 
from the shape gradient. 

30 

			δ f = d2a∫ 	SBδB⋅n			where			B0 ⋅∇SB = S − S.



31 

A magnetic tolerance TB can be computed 
from the magnetic sensitivity. 

		Choose	an	acceptable	Δf &any	weight	W θ ,ζ( )≥0.

			If		 δB⋅n ≤TB ,
		
Let		TB θ ,ζ( ) = W θ ,ζ( ) 	Δf

d2 ′a∫ 	W ′θ , ′ζ( ) SB ′θ , ′ζ( ) .

			

δ f 	 ≤ 	 d2a∫ SB δB⋅n 	
≤ 	 d2a∫ SB TB 	
≤ 	Δf .
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A magnetic tolerance TB can be computed 
from the magnetic sensitivity. 

		Choose	an	acceptable	Δf &any	weight	W θ ,ζ( )≥0.

			If		 δB⋅n ≤TB ,
		
Let		TB θ ,ζ( ) = W θ ,ζ( ) 	Δf

d2 ′a∫ 	W ′θ , ′ζ( ) SB ′θ , ′ζ( ) .

			

δ f 	 ≤ 	 d2a∫ SB δB⋅n 	
≤ 	 d2a∫ SB TB 	
≤ 	Δf .



Conclusions 
Shape gradients provide local sensitivity & tolerance information 
which can inform 
•  How accurately and rigidly the coils should be built, 
•  Where coils should be connected to support structure, 
•  Where sources of error fields like coil leads should be located, 
and enable systematic calculation of tolerances. 
 
Future work: 
•  Shape gradients for integrability/islands, 
•  Direct calculation of shape gradients using adjoint methods, 
•  Target tolerances in STELLOPT to increase them. 

33 

Nuclear Fusion 58, 076023 (2018) 



Extra slides 

34/10 



The shape gradient can be computed from parameter 
derivatives by solving a small linear system. 

35 

Plasma	boundary	shape:	

Discretize	shape	gradient:	
		
S θ ,ζ( ) = Sq cos mqθ −nqζ( )

q
∑

		Parameters	pj 	are	 Rm ,n
c ,Zm ,ns{ }.

		
Compute	 ∂ f

∂pj
	using	finite	differences,	e.g.	STELLOPT.



The shape gradient can be computed from parameter 
derivatives by solving a small linear system. 

36 

Plasma	boundary	shape:	

Discretize	shape	gradient:	
		
S θ ,ζ( ) = Sq cos mqθ −nqζ( )

q
∑

		Parameters	pj 	are	 Rm ,n
c ,Zm ,ns{ }.

		
Compute	 ∂ f

∂pj
	using	finite	differences,	e.g.	STELLOPT.

Linear	system,	not	square.	
			
d2a∫ δr ⋅n( )S =δ f 						⇒ 						Solve		 d2a∫

∂r
∂pj

⋅nS = ∂ f
∂pj

	for	S.				 1( )



The shape gradient can be computed from parameter 
derivatives by solving a small linear system. 
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Plasma	boundary	shape:	

Discretize	shape	gradient:	
		
S θ ,ζ( ) = Sq cos mqθ −nqζ( )

q
∑

		Parameters	pj 	are	 Rm ,n
c ,Zm ,ns{ }.

		
Compute	 ∂ f

∂pj
	using	finite	differences,	e.g.	STELLOPT.

Linear	system,	not	square.	

		
Check	that	 ∂ f

∂pj
	is	in	the	column	space	of	matrix.

		If	so,	 1( ) 	can	be	solved	for	Sq 	using	pseudo-inverse	of	matrix.

			
d2a∫ δr ⋅n( )S =δ f 						⇒ 						Solve		 d2a∫

∂r
∂pj

⋅nS = ∂ f
∂pj

	for	S.				 1( )



Shape gradients have been used in other fields, 
mostly for shapes interacting with neutral fluid. 

•  O. Pironneau, Optimal Shape Design for Elliptic Systems (Springer-
Verlag, 1984). 

•  K. K. Choi and N.-H. Kim, Structural Sensitivity Analysis and 
Optimization, vol 1 (Springer, 2005). 

•  M. C. Delfour and J.-P. Zolesio, Shapes and Geometries: Metrics, 
Analysis, Differential Calculus, and Optimization, 2nd ed. (SIAM, 2011). 

•  … 

And recently for optimizing tokamak divertor shapes: 

•  W. Dekeyser, Ph.D. thesis, KU Leuven (2014). 

•  W. Dekeyser et al, Nucl. Fusion 54, 073022 (2014). 

•  M. Baelmans, et al, Nucl. Fusion 57, 036022 (2017). 
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The shape gradient representation can be expected 
to exist for many important shape functionals. 

39 

		Derivative	of	a	function	of	n	numbers		f r1 ,r2 ,...,rn( ):
		
δ f = ∂ f

∂rj
δrj

j=1

n

∑

		
n→∞	limit:			f = f r ϑ( )⎡

⎣
⎤
⎦ ,					δ f = dϑ

0

2π
∫

δ f
δr

δr

This	is	an	instance	of	the	Riesz	representation	theorem:	any	linear	
operator	can	be	written	as	an	inner	product	with	some	element	of	
the	appropriate	space.	

		
3D:			f = f rX ϑ( ) , 	rY ϑ( ) , 	rZ ϑ( )⎡

⎣
⎤
⎦ , 					δ f = dϑ

0

2π
∫

δ f
δri

δri
i=X ,Y ,Z
∑

			
Define		S = dr

dϑ

−1

eX
∂ f
∂rX

+eY
∂ f
∂rY

+eZ
∂ f
∂rZ

⎛

⎝⎜
⎞

⎠⎟ 			 ⇒ 			δ f = dℓ∫ 	S ⋅δr



The algorithm for computing coil shape gradients can 
be verified by comparison to analytic theory. 
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Section IV.A method:

Section III.B method:

(a)

			Consider		f = length.						Analytic	result:		S = −κn
(NCSX	type-A	coil)	

Shape	gradient	S:	
Finite	diff.	method:	
Analytic	answer:	



`Direct method’ to compute sensitivity map 
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		Unknowns	=	Sd 	on	a	grid:		Sd θ j , 	ζ j( )

		 

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

D
! "### $###

Sd

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

S
!"# $#

=

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

j
!"$
	

∂ f
∂pk			

d2a∫ 	 ∂r
∂pk

⋅n

			SVD:		D=UΣVT
			Solution	by	pseudo-inverse:		S = VΣ

+UT j

If j is not in the column space of D, then no sensitivity map exists.  

			⇒ 	Check	whether	UT j	entries	are	small	where	Σ 	entries	are	small.

			
d2a∫ 	Sd 	

∂r
∂pk

⋅n= ∂ f
∂pk 		pk ∈ Rmn

c ,Zmns{ }



Fourier method to compute sensitivity map 
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d2a∫ 	Sd 	

∂r
∂pk

⋅n= ∂ f
∂pk 		pk ∈ Rmn

c ,Zmns{ }
		Unknowns:		Sm,n
		
Sd = Sm,n cos mθ −nζ( )

m,n
∑

	 

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

D
! "## $##

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

S
!"$

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

j
!"$

	

∂ f
∂pk			

d2a∫ 	 ∂r
∂pk

⋅n
⎛

⎝⎜

× cos mθ −nζ( )⎞
⎠⎟

			SVD:		D=UΣVT
			Solution	by	pseudo-inverse:		S = VΣ

+UT j

If j is not in the column space of D, then no sensitivity map exists.  

			⇒ 	Check	whether	UT j	entries	are	small	where	Σ 	entries	are	small.

		Sm,n



If f is coordinate-dependent, so a sensitivity map 
does not exist, the RHS is not in the column space. 
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UT j for R
0
, direct approach(a)
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UT j for R
0
, Fourier approach(b)

		
Example:		f = R0 =

1
2π( )2

dθ
0

2π
∫ dζ 	

0

2π
∫ R



			
= 		 Sd δV + d2a	∫

SB
∇ψ 0

B0 ⋅∇ δr ⋅∇ψ 0( )

A magnetic sensitivity map can be computed 
from the displacement sensitivity map. 
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		B=B0 +δB, 			ψ =ψ 0 +δψ 		B⋅∇ψ =0 		B0 ⋅∇δψ +δB⋅∇ψ 0 =0

			0= dψ =δψ +δr ⋅∇ψ 0 									⇒ 									δψ = −δr ⋅∇ψ 0

		B0 ⋅∇ δr ⋅∇ψ 0( ) =δB⋅∇ψ 0

	Equivalent	to		the	∇ψ 0 	component
		of	the	MHD	induction	equation		δB=∇× δξ ×B0( ).

			Define	SB 	by		B0 ⋅∇SB = Sd − Sd .

B
y parts 

			δ f = d2a∫ 	Ss 	δr ⋅n		 = 		 Sd d2a	∫ δr ⋅n− d2a	∫ δr ⋅nB0 ⋅∇SB

			δ f 	 = 	 Sd δV + d2a	∫ SBδB⋅n


